April 17, 2024

National Primate Research Centers Prioritize Openness for Scientific Progress

At the forefront of biomedical and behavioral research are the seven National Primate Research Centers (NPRCs). They form a vital network dedicated to conducting and enabling groundbreaking research to improve human and animal health. Studies at the centers include development & aging, genetics & genomics, infectious disease, neuroscience & brain disorders, and reproduction & endocrinology. The NPRCs have been instrumental in driving discoveries crucial for overcoming health challenges and in helping the public understand the significance of research that involves animals.   

   

A Comprehensive Approach  

A priority of the NPRCs is to share information via local, regional and national outreach. Through a multifaceted approach, the NPRCs foster education and dialogue, ensuring openness about their research and the expert care of animals involved in NPRC research studies.   

   

From participating in local events to leveraging digital platforms, the NPRCs employ diverse strategies to make connections. NPRC.org provides the latest information for the public, and NPRCresearch.org, which is undergoing updates, ensures the scientific community has comprehensive information about the resources the NPRCs offer NIH-funded researchers. Through timely and engaging content, the NPRCs strive to explain the highly regulated research process and showcase their contributions to scientific progress.   

   

A Legacy of Excellence  

With a history spanning more than six decades, the NPRCs stand as pillars of scientific expertise and exemplars of public outreach. The U.S. Animal Research Openness initiative (USARO) recently featured information about the NPRCs’ outreach programs on the USARO website. This article provides encouragement for other research centers to follow the NPRC lead.   

   

A Future Filled with Accurate Information  

As the NPRCs continue to make scientific discoveries, their dedication to openness will continue to expand. The NPRCs believe openness helps empower individuals to make informed decisions, is critical to instilling confidence in scientific research and care of research animals, inspires future generations of scientists and ensures the public has accurate information about how research with animals is improving lives.  

  

  

 

 

April 1, 2024

Every day, the seven National Primate Research Centers (NPRCs) conduct and enable collaborative research studies to improve human and animal health. For more than five years now, we’ve been sharing our latest news and scientific advancements with you via NPRC.org and @NPRCnews (X), and there’s more coming your way. 

To ensure the NPRCs provide the topics of most interest to our readers and followers, we looked back at your favorite stories to help us move forward. Your top interests span behavior and psychology, infectious disease and neuroscience and brain disorders research. We will continue to share news that represents what you have most enjoyed, and we will also bring you information that reflects the breadth and depth of research across the NPRC network.   

We appreciate our readers and followers, and encourage you to take another look at your favorite blogs about NPRC research, to share the information with your family, friends and colleagues, and to continue connecting with us via NPRC.org, @NPRCnews and, now, on the new NPRC LinkedIn account. Via these resources, you’ll always be able to access the latest news on NPRC research that is helping people across generations and around the world live longer, healthier lives.   

 

Behavior and Psychology 

  1. The Effects of Wildfire Smoke Exposure in Early Pregnancy 

A study by California NPRC and UC Davis researchers investigated the effects of wildfire smoke exposure on infant monkeys during early pregnancy. The study found that exposure led to increased inflammation, reduced stress response, memory deficits and a more passive temperament in the monkeys. The findings suggest environmental changes during pregnancy can have lasting effects on offspring.  

 

Infectious Disease 

2. A Deadly Relationship: Stopping the Progression of Tuberculosis in HIV Patients   

Researchers at the Southwest National Primate Research Center have discovered chronic immune activation in the lungs plays a crucial role in the progression of tuberculosis (TB) and HIV co-infection. This dysfunction hampers the body’s ability to fight off infections. The study suggests the need to develop treatments targeting chronic immune activation alongside antiretroviral therapy (ART). TB and HIV are global pandemics that reinforce each other, affecting a significant portion of the world’s population. The findings offer hope for improved treatment strategies in the next decade. 

3. New Possible Correlation Between Lyme Disease and Lewy Body Dementia  

At Tulane National Primate Research Center, researchers discovered intact spirochetes of Borrelia burgdorferi, the bacterium that causes Lyme disease, in the central nervous system of a 69-year-old woman who received multiple rounds of antibiotic treatment. The presence of this bacterium coupled with her persistent neurological decline raises the possibility of a correlation between Lyme disease and Lewy body dementia. This finding highlights the bacterium’s persistence despite targeted therapy and emphasizes the need for further research to comprehend its role in severe neurological conditions. 

4. Are DNA Vaccinations a Perennial Answer to the Flu?  

Researchers at the Washington National Primate Research Center are developing a universal flu vaccine that could protect against all strains of the influenza virus. Using a DNA vaccine administered through the skin, the team has achieved promising results in macaques, providing 100% protection against a previous flu virus. This approach could eliminate the need for annual flu shots and be quickly deployed during pandemics. The researchers believe this technology could also be effective against other viruses and outbreaks. 

 

Neuroscience & Brain Disorders 

5. Past Social Experiences May Affect Brain’s Response to Oxytocin

A study at the Emory (formerly Yerkes) National Primate Research Center and Emory University showed the response of neurons to oxytocin, a chemical involved in social bonding, can vary based on an individual’s past experiences. Using female prairie voles, the researchers examined the nucleus accumbens, a brain region related to pair bonding. They found that oxytocin reduced neuron firing before bonding and increased it afterward, when triggered. The study also revealed a connection between oxytocin signals and endocannabinoids, affecting defensive interactions. These findings provide insights into how prior experiences influence oxytocin’s impact on brain circuits. 

6. NPRC Study May Have Found Link That Causes Anxiety and Depression  

Researchers at the Wisconsin National Primate Research Center and the University of Wisconsin-Madison have discovered brain pathways in juvenile monkeys that could contribute to anxiety and depression later in life. By studying the connections between specific brain regions, they found a correlation between synchronization and anxious temperament. These findings may lead to better treatment approaches and help identify gene alterations associated with anxiety. 

7. The Drinking Gene: Could Alcoholism Be Inherited?  

Research conducted at Oregon National Primate Research Center has identified a gene, GPR39, as a potential target for developing medication to prevent and treat alcoholism. By modifying protein levels encoded by this gene in mice, the researchers observed a significant reduction in alcohol consumption. They also found a link between alcohol and the activity of this gene. The study draws attention to the importance of cross-species approaches to identify drugs for treating alcohol use disorder. Further investigations are under way to determine if the same mechanism applies to humans. These findings offer potential insights for developing drugs to address chronic alcoholism and mood disorders. 

 

Oxytocin is a hormone that plays a critical role in social bonding and attachment. In recent years, researchers have been studying the effects of intranasal oxytocin, a non-invasive treatment that reduces social impairment in several neurological and behavioral disorders, such as autism.  

However, the long-term effects and efficacy of the treatment are currently under examination. Studies conducted by Dr. Karen Bales’ lab at the California National Primate Research Center reveal that chronic intranasal oxytocin produces sex-specific biological and behavioral responses in titi monkeys, a monogamous nonhuman primate.  

The researchers found that all OT-treated monkeys engaged more in social interactions but differed in their social behavior by sex. The males exhibited more social interest in unfamiliar animals, while females directed their interest toward their parents.  

The monkeys were divided into two groups: one received a daily dose of intranasal OT, while the other received saline for six months. The treatment group exhibited more prosocial behavior in their home enclosure immediately following their dose than the control group. 

Researchers also examined neural effects and social behavior during adolescence and into adulthood one-year after treatment ended. As adults, males from the treatment group maintained some prosocial effects. They also scored higher on several measures of affiliative behavior than the control group. Females, however, experienced a slight delay in forming a bond with their new mate. 

The researchers observed that chronic treatments during adolescence altered their behavior long-term, and these behavioral changes were different for males and females. These findings emphasize the complexity of the treatment and lay an essential foundation for more research on its use in humans. 

A collaborator on the project, Dr. Suma Jacob from the University of Minnesota Medical School, explained that “there is more research to be done on oxytocin, how it works, its effects, and feedback systems.”

February 22, 2023

Covid-19 is a highly contagious and quickly spread disease caused by SARS-CoV-2. Since its discovery in 2019, researchers have remained dedicated to creating a vaccination for people of all ages. While many people with Covid-19 have mild symptoms, others can become highly ill as the disease attacks the lungs and respiratory systems.

 

In late 2022, the CDC expanded the use of vaccines for children ages six months to 5 years old. The CDC states, “The vast majority of children in this age group have not received any doses of a COVID-19 vaccine. CDC is working to increase parent and provider confidence in COVID-19 vaccines and improve uptake among the 95% of children who are not vaccinated or have not completed the COVID-19 vaccine primary series.”1

 

A new study from the California National Primate Research Center, UNC-Chapel Hill, and Will Cornell Medicine, determined two-dose vaccines protect against lung disease in rhesus macaques one year after they were vaccinated as infants.

 

Researchers immunized two groups of eight infant rhesus macaques at the CNPRC at two months of age and again four weeks later.

 

Each animal received one of two vaccine types: a preclinical version of the Moderna mRNA vaccine or a vaccine combining a protein with a potent adjuvant formulation. One year later, the animals received a high-dose challenge with a SARS-CoV-2 variant to test their immune responses. Both proved successful in protecting against lung disease implying the vaccines are safe and highly effective when given to young infant macaques and may reduce the need for frequent boosters in young children.

 

Young infants are one of the most vulnerable populations regarding Covid-19. “This study emphasizes the need to get human infants immunized against SARS-CoV-2 as much as possible, as the benefits are clear and long-lasting. It also highlights the value of animal models in infectious disease research,” said Koen Van Rompay, co-author of the study. 

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. While the disease is relatively new, researchers are now studying its long-term effects. Some people with COVID-19 experience little to no symptoms, while others continue to experience fatigue, respiratory and neurological symptoms.

 

According to a recent report, eighty percent of individuals hospitalized for COVID-19 reported neurological symptoms. Because of this, researchers from the California National Primate Research Center at the University of California, Davis, decided to explore this complex issue further. The findings reveal significant neuron damage and inflammation in rhesus macaque monkeys within a week of infection.

 

In addition, the study unveiled an exacerbated effect in older rhesus macaques and those with Type 2 diabetes. The virus spread further in the brain, by traveling through the nose along the olfactory nerve, in aged animals and affected their memory and cognition causing particular concerns about potential spikes in neurodegenerative diseases in humans.

 

John Morrison, professor of neurology at UC Davis and director of the CNPRC, states, “In the aged monkeys, in particular, the virus is infecting neurons in regions known to be highly vulnerable to Alzheimer’s disease.” 

 

The researchers plan to continue to study the brain post-infection to examine the extent and nature of brain damage underlying the long-term neurological complications of COVID-19 to help doctors better understand how to help humans affected by the disease.

October 8, 2022

Giving birth is one of the most exciting times in parents’ lives. And doctors do everything in their power to help deliver healthy babies. This often includes providing antibiotics to protect infants from contracting an infection during vaginal or cesarean deliveries.

Currently, antibiotics directed at a wide range of bacteria are prescribed to 4-10% of all newborns.* However, new research conducted by the Cincinnati Children’s Hospital Medical Center (CCHMC) and the California National Primate Research Center (CNPRC) reveals that antibiotic treatments in newborns can change the immune system’s response to lung infections like pneumonia. 

 Researchers studied a group of rhesus macaque infants and their reactions to antibiotics vs. a group that did not receive the medication. The result? The animals that received antibiotics showed a more severe reaction to pneumonia than the control group. 

 “Early life antibiotic use has been linked to chronic health conditions in children but we don’t understand the underlying biology of these effects. This important study is the first to provide experimental evidence of a potential negative effect of antibiotic treatment in infancy in a relevant animal model of childhood development,” said Dr. Lisa Miller, co-author on the study.

The researchers will continue their studies in other animals, including mice, to eventually test and screen human babies as part of preparing to help those more at risk of contracting pneumonia after receiving antibiotics during birth.

Researchers also have a clear message for parents: infants who need antibiotics should still get them. Antibiotics transform lethal infections into minor diseases and have saved countless lives. 

“The next step is to learn how to balance the benefits of antibiotic treatment with the impact on the immune system to avoid potential health risks in susceptible infants,” says Miller.

September 19, 2022

Approximately 30,000 cases of Lyme disease are reported to CDC every year. Lyme disease transmits the Lyme disease-causing bacteria to humans through the bite of infected ticks with symptoms including fever, headaches, tiredness, and a skin rash. If Lyme is left undetected, the infection can infect the body’s joints, heart, and even nervous system. These patients can suffer from severe neurological issues, significantly diminishing their quality of life.

While antibiotics can effectively treat most cases that are detected early,, undetected infections become harder to eradicate and can cause more prolonged-term effects on people. Research about these neuroinflammation symptoms associated with Lyme disease is limited and evolving. 

 Recently, researchers at the Tulane National Primate Research Center discovered remnants of B. burgdorferi, the bacteria causing Lyme disease, may contribute to inflammation in the nervous system. In fact, these remnants can be more inflammatory (and can also cause cell death) than live bacteria, according to the trials using nonhuman primates. 

While antibiotics kill most intact bacteria in organs, some individuals cannot completely rid themselves of the remnants. Geetha Parthasarathy, Ph.D., assistant professor of microbiology and immunology at the Tulane National Primate Research Center, explains, “As neuroinflammation is the basis of many neurological disorders, lingering inflammation in the brain due to these unresolved fragments could cause long-term health consequences.”

June 22, 2022

Many previous studies explain how exposure to certain environmental substances during pregnancy may affect your baby’s health. Toxic substances increase the risk for congenital disabilities, low birth weight, prematurity, and miscarriage.

Studying the long-term effects of various environmental changes during pregnancy has occurred for decades¾from exposure to metals, cigarette smoke, stress, radiation, and more. But, recently, a new study at the California National Primate Research Center at the University of California, Davis, was published exploring the effects of wildfire smoke exposure during early pregnancy on a group of infant monkeys.

It’s typically challenging to study exposure to environmental variations during early pregnancy in women because they often aren’t aware of their pregnancies until weeks after conception. But a fire beginning on November 8, 2018, in Davis, California, provided a natural experiment in wildfire smoke exposure for a group of rhesus macaques housed close by in outdoor corrals at the California National Primate Research Center during mating season. Just under 90 monkeys were born six months later.

After months, studies proved the baby monkeys exposed to smoke had increased inflammation, reduced cortisol response to stress, memory deficits, and a more passive temperament than other animals.

Because of this study’s findings, Bill Lasley, professor emeritus of population health and reproduction at the UC Davis School of Veterinary Medicine and Center for Health and Environment, plans to study women who became pregnant through IVF. This allows him and his team to look at more prolonged-term effects of wildfire exposure with the added benefit of knowing the exact time of conception.

June 13, 2022

When you think of Rhesus macaques, one typically doesn’t feel that it has an innate ability to sense the internal state of its own body, like observing the quickening of its heartbeat. Until recently, scientists would have agreed, too. But a new study conducted by the California National Primate Research Center at the University of California, Davis, and Royal Holloway, University of London, is changing the way researchers think.

During this study, a team of researchers monitored four rhesus monkeys for their reaction to a stimulus. As it turns out, all four monkeys spent more time watching the out-of-rhythm stimuli. What does this mean? They have a human-like ability to perceive their heartbeats and have an interoceptive sense.

Interception is critically important to helping your brain identify things happening in your body, like when your breathing quickens or heart races. The brain uses information about how your body is feeling to collect feedback on your current emotions. 

Many people with conditions like ADHD, autism, trauma disorders, depression, anxiety, and Alzheimer’s disease have been found to have interception difficulties. 

Eliza Bliss-Moreau, associate professor of psychology at UC Davis and core scientist at the CNPRC states, “Our model will be used in future translational studies of neurodegenerative diseases, including Alzheimer’s. If we can measure interoception, we can track it as a behavioral biomarker of disease progression.

The published paper concludes that the next step is to study how interoception may be involved in other psychiatric and neuropsychiatric conditions.

November 18, 2021

California National Primate Research Center (NPRC) Director and neuroscientist John Morrison, PhD, is a leader in sharing science with the public. His latest public outreach effort is serving as the lead scientist behind the exhibit, “Life of a Neuron.” This comes after years of collaboration between Washington, D.C.’s technology-based art space ARTECHOUSE and the Society for Neuroscience, a professional organization that represents neuroscientists around the globe. The immersive experience marries cutting-edge science and art to illuminate the life experience of the brain’s 86 billion neurons.

Read more about the exhibit and Dr. Morrison’s involvement here, and listen to NPR’s coverage here

Back to top