Alzheimer’s disease is far too common. In fact, the Alzheimer’s Association estimates that more than 5 million Americans are living with it, and one in three seniors die from the disease or something related. Patients experience a gradual decline of memory and other important brain functions, which can cause great difficulty in older age. Unfortunately, early detection of age-associated cognitive dysfunction—although crucial—remains a challenge for scientists and medical professionals.
Scientists at Texas Biomedical Research Institute’s (Texas Biomed) Southwest National Primate Research Center (SNPRC) recently made progress in this regard when they published findings indicating the baboon could be a relevant model to test therapeutics and interventions for neurodegenerative diseases, such as early-stage Alzheimer’s and others.
The scientists observed a steep age-related cognitive decline in baboons about 20 years old, which is the equivalent of a 60-year-old human.
“This is the first time a naturally-occurring model for early-stage Alzheimer’s has been reported,” explained Dr. Marcel Daadi, Associate Professor at Texas Biomed’s SNPRC. “(The baboon) model could be relevant to test promising drugs, to better understand how and why the disease develops and to study the areas of the brain affected in order to determine how can we impact these pathways.”
Neurodegenerative diseases are related to the aging of brain cells and synaptic loss, which is a loss of the lines of communications inside the brain. Previous studies have pinpointed the prefrontal cortex (PFC) of the brain as one of the regions most affected by age. The PFC plays a key role in working memory function as well as self-regulatory and goal-directed behaviors, which are all vulnerable to aging.
To observe whether these functions are impacted by aging in baboons and determine whether the baboons at varying ages could discern and learn new tasks, Dr. Daadi and his team separated the baboons into two groups based on age (adult group and aged group) and performed a series of cognitive tests.
“What we found is that aged baboons lagged significantly in performance among all four tests for attention, learning and memory,” Dr. Daadi said.
The researchers noted that a delay or inability to collect rewards increased in older baboons, suggesting a decline in motivation and/or motor skills. The team also demonstrated that aged subjects show deficiencies in attention, learning and memory. The findings are consistent with human studies that have suggested a sharp decline in brain systems function and cognition around 60 years.
Until now, rodents have been the primary lab model to test therapeutic interventions for neurodegenerative diseases. But mice don’t always reflect human processes, so a nonhuman primate like the baboon could prove to be a more effective model for testing.
“The failure rate in clinical trials of Alzheimer’s disease therapeutics is extremely high at about 99.6%, and we need to change that,” said Dr. Daadi.
He indicated that the next steps would include performing imaging and examining biomarkers to better understand the origins and nature of the disease.
The fight against Alzheimer’s is ongoing, and NPRC scientists are on the front lines. To learn more about the work happening at our locations around the country, visit this link.