October 25, 2023

The battle against COVID-19 has been relentless, and scientists at Emory University and researchers from collaborative institutions worldwide are leaving no stone unturned in their quest for innovative treatment options. In an exciting breakthrough, researchers at Emory’s NPRC and their colleagues have delved into the intricate world of type 1 Interferon (IFN-I) signaling, a key player in our body’s defense against infections. Their groundbreaking study, conducted with nonhuman primates, offers a fresh perspective on combating SARS-CoV-2, and paves the way for potential new treatments for COVID-19. 


The Defender: Type 1 Interferon 

Senior author, Mirko Paiardini, PhD, and his team focused on understanding the role of IFN-I in SARS-CoV-2 infections. IFN-I is like the first responder in our body’s defense mechanism, acting swiftly to thwart viral replication when an infection is detected. This study, a first in nonhuman primates, sheds light on how tweaking IFN-I signaling can impact viral replication and the progression of COVID-19. 


The Balancing Act: IFN-I’s Double-Edged Sword 

The findings of the Emory University study illuminate a delicate balance in the fight against COVID-19. While early IFN-I responses are crucial for containing SARS-CoV-2, an excess of IFN-I signaling can lead to hyperinflammation in the body, contributing to severe disease. This discovery underscores the importance of timely intervention to prevent excessive inflammation, a primary driver of severe COVID-19 cases. 

Dr. Paiardini, Division Chief of Microbiology and Immunology, Professor of Pathology and Laboratory Medicine, and Co-Director at the Emory Center for AIDS Research, emphasizes the significance of this balance and the need to fine-tune the body’s immune response to combat the virus effectively. 


The Experiment: IFNmod to the Rescue 

Researchers used a modified version of interferon, aptly named IFNmod, in rhesus macaques before and during acute SARS-CoV-2 infection to modulate IFN-I signaling. The results were nothing short of remarkable. IFNmod treatment weakened antiviral and inflammatory gene expression, leading to lower levels of inflammatory cytokines in the lower airways. This reduction in inflammation correlated with reduced lung pathology.  


“We were also surprised to find IFNmod treatment had a profound effect on SARS-CoV-2 viral loads, with a 3,000-fold reduction in viral loads in the lower airways of treated animals,” says co-first author Elise Viox.  


Emory University’s groundbreaking research into modulating type 1 Interferon signaling offers hope in our battle against COVID-19. By striking the delicate balance between immune response and inflammation, we’re closer to effective treatments for this tenacious virus.  


Back to top