April 17, 2024

National Primate Research Centers Prioritize Openness for Scientific Progress

At the forefront of biomedical and behavioral research are the seven National Primate Research Centers (NPRCs). They form a vital network dedicated to conducting and enabling groundbreaking research to improve human and animal health. Studies at the centers include development & aging, genetics & genomics, infectious disease, neuroscience & brain disorders, and reproduction & endocrinology. The NPRCs have been instrumental in driving discoveries crucial for overcoming health challenges and in helping the public understand the significance of research that involves animals.   

   

A Comprehensive Approach  

A priority of the NPRCs is to share information via local, regional and national outreach. Through a multifaceted approach, the NPRCs foster education and dialogue, ensuring openness about their research and the expert care of animals involved in NPRC research studies.   

   

From participating in local events to leveraging digital platforms, the NPRCs employ diverse strategies to make connections. NPRC.org provides the latest information for the public, and NPRCresearch.org, which is undergoing updates, ensures the scientific community has comprehensive information about the resources the NPRCs offer NIH-funded researchers. Through timely and engaging content, the NPRCs strive to explain the highly regulated research process and showcase their contributions to scientific progress.   

   

A Legacy of Excellence  

With a history spanning more than six decades, the NPRCs stand as pillars of scientific expertise and exemplars of public outreach. The U.S. Animal Research Openness initiative (USARO) recently featured information about the NPRCs’ outreach programs on the USARO website. This article provides encouragement for other research centers to follow the NPRC lead.   

   

A Future Filled with Accurate Information  

As the NPRCs continue to make scientific discoveries, their dedication to openness will continue to expand. The NPRCs believe openness helps empower individuals to make informed decisions, is critical to instilling confidence in scientific research and care of research animals, inspires future generations of scientists and ensures the public has accurate information about how research with animals is improving lives.  

  

  

 

 

April 1, 2024

Every day, the seven National Primate Research Centers (NPRCs) conduct and enable collaborative research studies to improve human and animal health. For more than five years now, we’ve been sharing our latest news and scientific advancements with you via NPRC.org and @NPRCnews (X), and there’s more coming your way. 

To ensure the NPRCs provide the topics of most interest to our readers and followers, we looked back at your favorite stories to help us move forward. Your top interests span behavior and psychology, infectious disease and neuroscience and brain disorders research. We will continue to share news that represents what you have most enjoyed, and we will also bring you information that reflects the breadth and depth of research across the NPRC network.   

We appreciate our readers and followers, and encourage you to take another look at your favorite blogs about NPRC research, to share the information with your family, friends and colleagues, and to continue connecting with us via NPRC.org, @NPRCnews and, now, on the new NPRC LinkedIn account. Via these resources, you’ll always be able to access the latest news on NPRC research that is helping people across generations and around the world live longer, healthier lives.   

 

Behavior and Psychology 

  1. The Effects of Wildfire Smoke Exposure in Early Pregnancy 

A study by California NPRC and UC Davis researchers investigated the effects of wildfire smoke exposure on infant monkeys during early pregnancy. The study found that exposure led to increased inflammation, reduced stress response, memory deficits and a more passive temperament in the monkeys. The findings suggest environmental changes during pregnancy can have lasting effects on offspring.  

 

Infectious Disease 

2. A Deadly Relationship: Stopping the Progression of Tuberculosis in HIV Patients   

Researchers at the Southwest National Primate Research Center have discovered chronic immune activation in the lungs plays a crucial role in the progression of tuberculosis (TB) and HIV co-infection. This dysfunction hampers the body’s ability to fight off infections. The study suggests the need to develop treatments targeting chronic immune activation alongside antiretroviral therapy (ART). TB and HIV are global pandemics that reinforce each other, affecting a significant portion of the world’s population. The findings offer hope for improved treatment strategies in the next decade. 

3. New Possible Correlation Between Lyme Disease and Lewy Body Dementia  

At Tulane National Primate Research Center, researchers discovered intact spirochetes of Borrelia burgdorferi, the bacterium that causes Lyme disease, in the central nervous system of a 69-year-old woman who received multiple rounds of antibiotic treatment. The presence of this bacterium coupled with her persistent neurological decline raises the possibility of a correlation between Lyme disease and Lewy body dementia. This finding highlights the bacterium’s persistence despite targeted therapy and emphasizes the need for further research to comprehend its role in severe neurological conditions. 

4. Are DNA Vaccinations a Perennial Answer to the Flu?  

Researchers at the Washington National Primate Research Center are developing a universal flu vaccine that could protect against all strains of the influenza virus. Using a DNA vaccine administered through the skin, the team has achieved promising results in macaques, providing 100% protection against a previous flu virus. This approach could eliminate the need for annual flu shots and be quickly deployed during pandemics. The researchers believe this technology could also be effective against other viruses and outbreaks. 

 

Neuroscience & Brain Disorders 

5. Past Social Experiences May Affect Brain’s Response to Oxytocin

A study at the Emory (formerly Yerkes) National Primate Research Center and Emory University showed the response of neurons to oxytocin, a chemical involved in social bonding, can vary based on an individual’s past experiences. Using female prairie voles, the researchers examined the nucleus accumbens, a brain region related to pair bonding. They found that oxytocin reduced neuron firing before bonding and increased it afterward, when triggered. The study also revealed a connection between oxytocin signals and endocannabinoids, affecting defensive interactions. These findings provide insights into how prior experiences influence oxytocin’s impact on brain circuits. 

6. NPRC Study May Have Found Link That Causes Anxiety and Depression  

Researchers at the Wisconsin National Primate Research Center and the University of Wisconsin-Madison have discovered brain pathways in juvenile monkeys that could contribute to anxiety and depression later in life. By studying the connections between specific brain regions, they found a correlation between synchronization and anxious temperament. These findings may lead to better treatment approaches and help identify gene alterations associated with anxiety. 

7. The Drinking Gene: Could Alcoholism Be Inherited?  

Research conducted at Oregon National Primate Research Center has identified a gene, GPR39, as a potential target for developing medication to prevent and treat alcoholism. By modifying protein levels encoded by this gene in mice, the researchers observed a significant reduction in alcohol consumption. They also found a link between alcohol and the activity of this gene. The study draws attention to the importance of cross-species approaches to identify drugs for treating alcohol use disorder. Further investigations are under way to determine if the same mechanism applies to humans. These findings offer potential insights for developing drugs to address chronic alcoholism and mood disorders. 

September 22, 2021

Pelizaeus-Merzbacher disease is an inherited condition involving the brain and spinal cord, resulting in reduced neurological function. Those affected by the disease (an estimated 1 in 100,000 people) typically experience weak muscle tone, involuntary movements of the eyes, and delayed motor skill development.

In 2016 the Oregon National Primate Research Center (ONPRC)  received a $4 million grant from the National Institutes of Health (NIH) to develop a genomic database for rhesus macaques. Today, the database contains the genomic sequences of over 2,000 monkeys, which has enabled researchers to identify thousands of genetic variants identical to those known to cause human disorders.

Anne Lewis, D.V.M., Ph.D., head of pathology services at ONPRC, observed three young rhesus macaques displaying symptoms, including tremors and motor dysfunction, which were similar to those seen in  human  Pelizaeus-Merzbacher patients. Scientists at ONPRC were able to match her observations with data in the rhesus macaque genome database, helping other scientists to apply therapies to an animal model that closely matches the disease impacting humans. Additional research, led by scientists at Oregon Health & Science University (ONPRCs affiliated institution), could help develop new therapies to treat Pelizaeus-Merzbacher disease.

 “This really sets us up for the possibility of doing gene therapies, or neural stem cell-based therapies in the developing brain,” said Larry Sherman, Ph.D., professor in the Division of Neuroscience at the ONPRC.

To learn more about genome sequencing at the NPRCs, please visit here.

September 1, 2021

Fear struck many when HIV (human immunodeficiency virus) and AIDS (acquired immunodeficiency syndrome) began in the mid-to the late 1970s. No one knew the causes of this mysterious new virus, and there were no treatments, preventions, or cures available. Over the past few decades, scientific advances have enabled patients to receive life-extending treatments and medications. 

The majority of HIV researchers agree that the virus evolved from the closely related simian immunodeficiency virus (SIV), transferring from non-human primates to humans.

CytoDyn Inc., a late-stage biotechnology company developing a drug called leronlimab, released an exciting study in partnership with Oregon National Primate Research Center showing that the drug prevents non-human primates from being infected with simian human immunodeficiency virus (SHIV), a monkey-human chimeric form of HIV. 

“Our study findings indicate leronlimab could be a new weapon against the HIV epidemic,” said Jonah Sacha, Ph.D., an Oregon Health & Science University professor at OHSU’s Oregon National Primate Center and Vaccine & Gene Therapy Institute.

Five clinical trials demonstrate how leronlimab can significantly reduce or control HIV viral load in humans—and ultimately prevent human infection from the virus that causes AIDS. If approved for clinical use, leronlimab will join other AIDS PrEP drugs (“Pre-Exposure Prophylaxis”), medicines taken by individuals who are at risk for exposure to HIV to prevent infection. The drug also benefits other diseases (NASH, cancer, and COVID-19) without the side effects previously experienced from other treatments such as kidney and bone problems.

While the research and trials are still ongoing, early results are promising. To learn more about NPRC research into HIV, please click here.

 

Note: The NPRCs will update this blog with our latest COVID-19 news.

Since beginning COVID-19 research in early 2020, NPRC researchers have made encouraging progress in efforts to better understand, diagnose, prevent and treat this novel disease. We’re committed to conducting and enabling research to end this global pandemic and to providing information so the public has ready access to our scientific results.

Our most recent COVID-19 news includes: 

Below is even more information about our extensive and collaborative COVID-19 research:

Diagnostics:

Prevention:

Treatments:

Additional NPRC COVID-19 News:

Bookmark this page so you can easily return here for the latest NPRC COVID-19 research information. We’ve also compiled a list of resources here and provided links to previous NPRC COVID-19 news and national media stories here.

April 27, 2021

Did you know the rhesus macaque is the most widely studied nonhuman primate in biomedical research? The U.S. research colonies of rhesus macaques were founded primarily with animals imported from India decades ago and with the addition of Chinese-origin rhesus macaques over time. A deep understanding of their evolution and genetics is key to recognizing the origins of human traits and identifying disease genes of value to improving human health.

Rhesus macaques at the seven National Primate Research Centers (NPRCs) are key in the discovery and development of new and robust models of human disease and in evaluating the effect of genetic variation on experimental treatments prior to human clinical trials.  

In a recent publication in Science that detailed researchers’ use of advanced sequencing technology and analysis of more than 850 macaques across the seven NPRCs, researchers present a complete reference genome for the rhesus macaque. “In particular, we can now finally tackle some of the more complex regions of the genome and begin to understand how new genes evolve including the processes that have shaped them,” says University of Washington genome sciences professor and senior author in the paper, Evan Eichler, PhD.

In addition, the study identified animals that naturally carry potentially damaging genetic mutations, allowing researchers to better understand genetic variation and susceptibility to diseases of relevance to humans. So far, the findings reveal thousands of naturally occurring genetic variants (mutations), including those in genes linked to Autism Spectrum Disorder and other neurodevelopmental disorders in humans, such as SHANK3.

Jeffrey Rogers, PhD, associate professor at the Human Genome Sequencing Center and Department of Molecular and Human Genetics at Baylor College of Medicine and co-author of the paper explains, “Rhesus macaques are important for studies of conditions ranging from infectious disease (including COVID-19) to neuroscience, cancer and reproductive biology. A high-quality reference genome can aid researchers who are looking to understand the causes of various illnesses or aiming to develop treatments.”

The study is a great example of a broad collaboration across the NPRCs and other research centers in the U.S. that will continue to make a difference in human health. By identifying rhesus macaques that carry naturally occurring mutations, NPRC and other researchers are now able to examine biobehavioral traits associated with mutations. The researchers can also follow the monkeys’ offspring, and, in some cases, actually create new breeding groups to generate animals with specific genetic mutations and phenotypes. 

“This new information will lay the foundation for us to create naturally occurring models of human genetic diseases,” says Paul Johnson, MD, director of the Yerkes (now Emory) NPRC. “The development of these new models could have a profound impact on our ability to translate research in animal models into treatments and cures in people,” he continues.

To learn more about NPRC advances in genetics and genomics, explore additional research here

March 3, 2021

Scientific discovery is an ongoing process that takes time, observation, data collection and analysis, patience and more. At the NPRCs, our recent COVID-19 research is an example of the ongoing basic science process — how current research builds on previous discoveries and how discoveries help improve human health. This article from the National Institutes of Health (NIH) explains why basic science, such as the NPRCs conduct, is important and how taking time, as long as it takes, is a necessary part of scientific discovery.

Discoveries in Basic Science: A Perfectly Imperfect Process

Have you ever wondered why science takes so long? Maybe you haven’t thought about it much. But waiting around to hear more about COVID-19 may have you frustrated with the process.

Science can be slow and unpredictable. Each research advance builds on past discoveries, often in unexpected ways. It can take many years to build up enough basic knowledge to apply what scientists learn to improve human health.

“You really can’t understand how a disease occurs if you don’t understand how the basic biological processes work in the first place,” says Dr. Jon Lorsch, director of NIH’s National Institute of General Medical Sciences. “And of course, if you don’t understand how the underlying processes work, you don’t have any hope of actually fixing them and curing those diseases.”

Basic research asks fundamental questions about how life works. Scientists study cells, genes, proteins, and other building blocks of life. What they find can lead to better ways to predict, prevent, diagnose, and treat disease.

How Basic Research Works

When scientists are interested in a topic, they first read previous studies to find out what’s known. This lets them figure out what questions still need to be asked.

Using what they learn, scientists design new experiments to answer important unresolved questions. They collect and analyze data, and evaluate what the findings might mean.

The type of experiment depends on the question and the field of science. A lot of what we know about basic biology so far has come from studying organisms other than people.

“If one wants to delve into the intricate details of how cells work or how the molecules inside the cells work together to make processes happen, it can be very difficult to study them in humans,” Lorsch explains. “But you can study them in a less complicated life form.”

These are called research organisms. The basic biology of these organisms can be similar to ours, and much is already known about their genetic makeup. They can include yeast, fruit flies, worms, zebrafish, and mice.

Computers can also help answer basic science questions. “You can use computers to look for patterns and to try to understand how the different data you’ve collected can fit together,” Lorsch says.

But computer models have limits. They often rely on what’s already known about a process or disease. So it’s important that the models include the most up-to-date information. Scientists usually have more confidence in predictions when different computer models come up with similar answers.

This is true for other types of studies, too. One study usually only uncovers a piece of a much larger puzzle. It takes a lot of data from many different scientists to start piecing the puzzle together.

Building Together

Science is a collective effort. Researchers often work together and communicate with each other regularly. They chat with other scientists about their work, both in their lab and beyond. They present their findings at national and international conferences. Networking with their peers lets them get feedback from other experts while doing their research.

Once they’ve collected enough evidence to support their idea, researchers go through a more formal peer-review process. They write a paper summarizing their study and try to get it published in a scientific journal. After they submit their study to a journal, editors review it and decide whether to send it to other scientists for peer review.

“Peer review keeps us all informed of each other’s work, makes sure we’re staying on the cutting-edge with our techniques, and maintains a level of integrity and honesty in science,” says Dr. Windy Boyd, a senior science editor who oversees the peer-review process at NIH’s scientific journal of environmental health research and news.

Different experts evaluate the quality of the research. They look at the methods and how the results were gathered.

“Peer reviewers can all be looking at slightly different parts of the work,” Boyd explains. “One reviewer might be an expert in one specific method, where another reviewer might be more of an expert in the type of study design, and someone else might be more focused on the disease itself.”

Peer reviewers may see problems with the experiments or think different experiments are needed. They might offer new ways to interpret the data. They can also reject the paper because of poor quality, a lack of new information, or other reasons. But if the research passes this peer review process, the study is published.

Just because a study is published doesn’t mean its interpretation of the data is “right.” Other studies may support a different hypothesis.

Scientists work to develop different explanations, or models, for the various findings. They usually favor the model that can explain the most data that’s available.

“At some point, the weight of the evidence from different research groups points strongly to an answer being the most likely,” Lorsch explains. “You should be able to use that model to make predictions that are testable, which further strengthens the likelihood that that answer is the correct one.”

An Ever-Changing Process

Science is always a work in progress. It takes many studies to figure out the “most accurate” model—which doesn’t mean the “right” model.

It’s a self-correcting process. Sometimes experiments can give different results when they’re repeated. Other times, when the results are combined with later studies, the current model no longer can explain all the data and needs to be updated.

“Science is constantly evolving; new tools are being discovered,” Boyd says. “So our understanding can also change over time as we use these different tools.”

Science looks at a question from many different angles with many different techniques. Stories you may see or read about a new study may not explain how it fits into the bigger picture.

“It can seem like, at times, studies contradict each other,” Boyd explains. “But the studies could have different designs and often ask different questions.”

The details of how studies are different aren’t always explained in stories in the media. Only over time does enough evidence accumulate to point toward an explanation of all the different findings on a topic.

“The storybook version of science is that the scientist is doing something, and there’s this eureka moment where everything is revealed,” Lorsch says. “But that’s really not how it happens. Everything is done one increment at a time.”

 

December 15, 2020

Research with animals is crucial to improving human and animal health. Animals in research provide unique insights not available with other scientific models, and they help scientists determine safety and effectiveness of preventions, treatments and cures. During the COVID-19 pandemic, animals in research have been especially important in accelerating the development COVID-19 vaccines as well as better diagnostics and additional treatment options.

At the NPRCs, we’re helping fill a critical role in halting COVID-19 by leading NIH-funded studies at our centers. We’re also participating in the public-private partnership ACTIV (Accelerating COVID-19 Therapeutic Interventions and Vaccines) to develop treatments and vaccines by sharing our knowledge, resources and animals, including conducting preclinical studies with NPRC monkeys for some of the leading industry vaccine candidates.

Scientific collaboration is especially important during a pandemic when time is of the essence and, in this case, animal resources are limited. At the onset of the pandemic, monkey importation was halted, putting increasing demands on the NPRC animal colonies, which were already limited in quantity and availability. The NPRCs account for only 1 in every 5 nonhuman primates (NHPs) used in U.S.-based research, so the limited supply at a time of high demand impacts NPRC COVID-related studies as well as pre-pandemic studies under way at the NPRCs and those in planning stages.

The NPRCs remain dedicated to our other areas of study, including research into HIV/AIDS and other infectious diseases, the neurosciences, cardiovascular and respiratory health, genetics and transplant medicine. 

We are also committed to meeting the future needs of animals for NIH-funded research. This is why the NPRCs support establishing a strategic reserve of NHPs to be used in times of national health crises. We are already growing our on-site breeding colonies when time, space and funding permit, strategically assigning animals to research protocols, harmonizing across centers for efficient use of animals and increasing rigor and reproducibility to facilitate collaboration and consistency across research labs. These strategic steps now further position the NPRCs for the translation of our research advancements from cell and animal models to humans, and are indicative of our commitment to help people across generations and the world live longer, healthier lives. 

To learn more about the NPRCs’ ongoing efforts to combat COVID-19, visit this page.

Editor’s Note, 2/22/21: The New York Times covered the research monkey shortage in today’s issue. Read the story here.

November 24, 2020

Talking about animals in research may not be part of everyday conversations – unless you work in research, are learning more about it or want to stop it. But if everyone knew how critical animals have been in 2020 to fast-track a safe and effective COVID-19 (coronavirus) vaccine, would that change?

Earlier this year, the National Institutes of Health (NIH) called upon the National Primate Research Centers (NPRCs) – as NIH has for HIV/AIDS, Ebola, Zika and other infectious disease threats – to identify animal species for studying the SARS-CoV-2 virus and developing safe and effective vaccines to block it.

The NPRCs went to work and within a few months had discovered how valuable nonhuman primate models (NHPs), especially macaques, are for studying SARS-CoV-2. The NPRCs found the virus infects rhesus, pigtail and cynomolgus macaques, so these animals were included in research programs that resulted in several vaccine candidates in the pipeline by summer’s end. In addition, other key models for SARS-CoV-2, such as mice and hamsters, contributed to the broadening knowledge of how best to tackle the disease in humans. This rapid pace of discovery was possible due to the NPRC researchers applying their expertise fighting other viruses, especially HIV/AIDS.

As with those other viruses, the NPRC researchers closely studied SARS-CoV-2 transmission routes and pathogenesis – this time focusing on the respiratory virus’ activity in the lungs and its impact on cells, tissues and organs. The researchers also conducted detailed genetic studies on the virus to help pharmaceutical researchers use pieces of the virus’ genetic code to fashion vaccine candidates and test them for safety and effectiveness in macaques.

Translating the biomedical research findings into the human population requires going from up to a few dozen monkeys in research to thousands of human volunteers in clinical trials; for COVID-19, more than 200,000 volunteers have enrolled in four promising clinical trials. As announced in November 2020, the Moderna and Pfizer mRNA vaccines tested on rhesus macaques were more than 90 percent effective in preventing COVID-19 in widespread (Phase 3) human clinical trials and are now on track for emergency FDA approval.

Research with animals connects these vaccines with other SARS-CoV-2 scientific advancements just as it has made connections among NPRC HIV/AIDS studies, the results from which facilitated the rapid pace to COVID-19 discoveries. Improving human and animal health – that’s what NPRC research with animals does, and that’s worth talking about any day.

Learn more about research with animals scientific advancements here.

September 28, 2020

The seven National Primate Research Centers (NPRCs) are participating in SciFest All Access 2020. This is the virtual answer to the postponed USA Science & Engineering Festival, which is recognized as the nation’s top science and engineering festival for K-12 students, college students, educators and families. Happening now through Oct. 3, registered participants can visit the NPRCs in the “Exhibit Portal, Health & Medicine Zone II.”

The NPRC booth includes links to NPRC.org, our collective website, as well as individual web pages for the seven centers. All pages are filled with educational resources and links to help you learn more about our research, the scientific advancements we’re making and the care we provide our research animals. Direct access links to these seven pages are provided below.

NPRC representatives will be “on site” at SciFest All Access answering questions registered participants submit via the “Ask a Question” link in the booth. We’re also answering questions participants email us at nprcoutreach@gmail.com.

You can learn even more about the NPRCs’ research to improve human and animal health by visiting NPRC.org and following us on Twitter at @NPRCnews.

We look forward to joining thousands of students, educators and families at this year’s SciFest All Access!

SciFest All Access NPRC Web Pages

California NPRC

Oregon NPRC

Southwest NPRC

Tulane NPRC

Washington NPRC

Wisconsin NPRC

Yerkes NPRC

Back to top